Crema Documentation
Release 1.0

Aug 18, 2021






9

Getting Started
Requirements
Installation

Model Definition
Credal Inference
Bayesian Inference
Factors

Domains

Graphical Models

10 Bayesian Network example

11 Contact and Support

QUICK START

11
13
17
19
23
25

27







Crema Documentation, Release 1.0

_static/img/logo.png

Crema (CREdal Models Algorithms) is an Java library for inference in credal networks. The main features of Crema
are:

* Provides a simple API for the definition of credal networks.
* CREMA embeds exact and approximate algorithms for credal inference.

¢ Models can be loaded and exported in UAI-based format for credal networks.

QUICK START 1



Crema Documentation, Release 1.0

2 QUICK START



CHAPTER
ONE

GETTING STARTED

As a short introduction to Crema, let us consider the following code snippet, in which an credal network with 2 nodes
is defined. Credal sets are specified by enumerating the extreme points or vertices. Finally, a conditional query is
performed.

import
import
import
import
import

public

ch.idsia.crema.core.ObservationBuilder;
ch.idsia.crema.core.Strides;

ch.idsia.crema. factor.credal.vertex.VertexFactor;
ch.idsia.crema.inference.ve.CredalVariableElimination;
ch.idsia.crema.model.graphical.DAGModel;

class Starting {

public static void main (String[] args) {

double p = 0.2;
double eps = 0.0001;

/* CN defined with vertex Factor +*/

// Define the model (with vertex factors)
DAGModel<VertexFactor> model = new DAGModel<> () ;
int A = model.addVariable (3);

int B = model.addVariable(2);
model.addParent (B, A);

// Define a credal set of the partent node

VertexFactor fu = new VertexFactor (model.getDomain (A), Strides.empty());
fu.addVertex (new double[]{0., 1-p, p});

fu.addVertex (new double[] {1-p, 0., p});

model.setFactor (A, fu);

// Define the credal set of the child
VertexFactor fx = new VertexFactor (model.getDomain (B), model.getDomain (A));

fx.addVertex (new double[]{1., 0.,}, 0);
fx.addVertex (new double([]{1., 0.,}, 1);
fx.addVertex (new double[]{0., 1.,}, 2);

model.setFactor (B, £x);
// Run exact inference

CredalVariableElimination inf = new CredalVariableElimination();
inf.query (model, ObservationBuilder.observe(B,0), A);

(continues on next page)




Crema Documentation, Release 1.0

(continued from previous page)

4 Chapter 1. Getting Started




CHAPTER
TWO

2.1

System

REQUIREMENTS

Crema requires Java 11 or higher and maven (https://maven.apache.org). Tests have been done under Linux Ubuntu
and macOS with openjdk 11 and 12.

2.2

Package Dependencies

Crema contains the dependencies shown below which are transparently managed with maven.

ch.javasoft.polco:polco:jar:4.7.1:compile
colt:colt:jar:1.2.0:compile
com.github.quickhull3d:quickhull3d:jar:1.0.0:compile
com.google.code.findbugs:jsr305:jar:3.0.2:compile

com.google.errorprone:error_prone_annotations:jar:2.3.4:compile

com.google.guava:failureaccess:jar:1.0.1:compile

com.google.guava:guava:jar:28.2-jre:compile

com.google.guava:listenablefuture:jar:9999.0-empty-to-avoid-conflict-with-guava:compile

com.google.j2objc:j2objc-annotations:jar: 1.3:compile
com.joptimizer:joptimizer:jar:3.5.1:compile
com.opencsv:opencsv:jar:5.2:compile
commons-beanutils:commons-beanutils:jar:1.9.4:compile
commons-cli:commons-cli:jar:1.4:compile
commons-collections:commons-collections:jar:3.2.2:compile
commons-logging:commons-logging:jar:1.2:compile
concurrent:concurrent:jar: 1.3.4:compile
javax.validation:validation-api:jar:1.1.0.Final:compile
junit:junit:jar:4.13.1:compile
log4j:log4j:jar:1.2.14:compile

net.sf.lpsolve:lp_solve:jar:5.5.2:compile



https://maven.apache.org

Crema Documentation, Release 1.0

* net.sf.troved;j:trove4j:jar:3.0.3:compile

* net.sourceforge.csparsej:csparsej:jar:1.1.1:compile

* org.apache.commons:commons-collections4:jar:4.4:compile

* org.apache.commons:commons-csv:jar:1.3:compile

* org.apache.commons:commons-lang3:jar:3.4:compile

* org.apache.commons:commons-math3:jar:3.6.1:compile

* org.apache.commons:commons-text:jar:1.8:compile

* org.apiguardian:apiguardian-api:jar:1.0.0:test

* org.checkerframework:checker-qual:jar:2.10.0:compile

* org.eclipse.persistence:org.eclipse.persistence.asm:jar:2.6.2:compile
* org.eclipse.persistence:org.eclipse.persistence.core:jar:2.6.2:compile
* org.glassfish:javax.json:jar:1.0.4:compile
 org.hamcrest:hamcrest-core:jar:1.3:compile

* org.jgrapht:jgrapht-core:jar:1.1.0:compile

* org.junit.jupiter:junit-jupiter-api:jar:5.4.2:test

* org.junit.jupiter:junit-jupiter-params:jar:5.4.2:test

e org.junit.platform:junit-platform-commons:jar:1.4.2:test

* org.opentest4j:opentestdj:jar:1.1.1:test

* org.slf4j:slf4j-api:jar:1.7.7:compile

6 Chapter 2. Requirements



CHAPTER
THREE

INSTALLATION

Crema can be easily included at any maven project. For this, add the following code in the pom.xml:

<repositories>
<repository>
<id>cremaRepo</id>
<url>https://raw.github.com/idsia/crema/mvn-repo/</url>
</repository>
</repositories>

<dependencies>
<dependency>
<groupId>ch.idsia</groupId>
<artifactId>crema</artifactId>
<version>(0.1.6</version>
<scope>compile</scope>
</dependency>
</dependencies>




Crema Documentation, Release 1.0

8 Chapter 3. Installation



CHAPTER
FOUR

MODEL DEFINITION

4.1 Credal Set Specification

For the definition of a credal set, the domains should be first specified. Discrete variable domains in Crema are
managed with objects of class Strides. Then, for the definition of a credal set defined by its vertices, create an
object of class VertexFactor as shown below.

// Define the domains
Strides strides_left = DomainBuilder.var (0).size(3).strides();
Strides strides_right = Strides.empty();

double p = 0.2;

// define a marginal vertex factor

VertexFactor f0 = new VertexFactor (strides_left, strides_right);
f0.addVertex (new double[] {p, 0, 1-p});

f0.addVertex (new double[] {0, p, 1-p});

Similarly, a conditional credal set can be define as shown in the following code.

// define a conditional vertex factor
strides_left = DomainBuilder.var(l).size(2).strides();
strides_right = DomainBuilder.var(0).size(3).strides();

VertexFactor fl = new VertexFactor (strides_left, strides_right); //K(vars[1]]|[0])

// when adding the extreme points, value of the conditioning variables should be_
—specified

fl.addVertex (new double[]{0.4, 0.6}, 0);

fl.addVertex (new double[]{0.2, 0.8}, 0);

fl.addVertex (new double[]{0.3, 0.7}, 1);
fl.addVertex (new double[]{0.4, 0.6}, 1);

fl.addVertex (new double[]{0.3, 0.7}, 2);
fl.addVertex (new double[]{0.4, 0.6}, 2);

Crema also allows the specification of credal sets by defining its constraints. This is done with the class
SeparateHalfspaceFactor.

SeparateHalfspaceFactor f0_constr = new SeparateHalfspaceFactor (strides_left, Strides.
—empty ());

(continues on next page)




Crema Documentation, Release 1.0

(continued from previous page)

// add constraints
f0_constr.addConstraint (new
f0_constr.addConstraint (new

// normalization constraint
f0_constr.addConstraint (new

// positive constraints

f0_constr.addConstraint (new
f0_constr.addConstraint (new
f0_constr.addConstraint (new

double[]{1.
double[] {0.

double[]{1.

double[]{1.
double[] {0.
double[]{0.

= O

= O

'!}I
'I}I

'I}I
'I}I
'!}I

Relationship
Relationship

Relationship

Relationship.
Relationship.
Relationship.

-EQ,
-EOQ,

-EOQ,

GEQ,
GEQ,
GEQ,

p);
1-p);

1);

0);
0);
0);

4.2 Credal Network Specification

For defining a credal network, create an object of class SparseModel, specify the structure of the graph and associate

the factors.

DAGModel<VertexFactor> cnet
int X0 =
int X1 =
cnet.addParent (X1, X0);

// Set the factors
cnet.setFactor (X0,
cnet.setFactor (X1,

£0);
£1);

= new DAGModel<>();
cnet.addVariable (3);
cnet.addVariable (2);

10

Chapter 4. Model Definition




CHAPTER
FIVE

CREDAL INFERENCE

Crema provides exact and approximate inference algorithms over credal networks. For the exact one, create an object
of class CredalvVariableElimination and run the query. The result is an object of class VertexFactor.

// set up the inference and run the queries

CredalVariableElimination inf = new CredalVariableElimination () ;
VertexFactor resl = inf.query(cnet, ObservationBuilder.observe (X0, 0), X1);
VertexFactor res2 = inf.query(cnet, XO0);

double[] [][] vertices = resl.getDatal();

Approximate inference can be done by means of linear programming. For this, create the an object of class
CredalApproxLP and then run the query. Note that the outputis an IntervalFactor.

CredalApproxLP inf = new CredalApproxLP ();
IntervalFactor resl = inf.query(cnet, ObservationBuilder.observe (X0, 0), X1);
IntervalFactor res2 = inf.query(cnet, X1);

double|[] lbound resl.getLower ();
double[] ubound = resl.getUpper();

11




Crema Documentation, Release 1.0

12 Chapter 5. Credal Inference



CHAPTER
SIX

BAYESIAN INFERENCE

Crema provides useful algorithm for precise inference on Bayesian networks.

6.1 Belief Propagation

The BeliefPropagation inference algorithm works on the BayesianFactors of a BayesainNetwork.

First instantiate the inference algorithm object using the model. The inference engine will build an internal
JunctionTree that will be used for the following queries. Then remember to call fullPropagation () to
update the model. This will return the posterior of a variable considered the root of the internal JunctionTree.

// P(A)

bp.clearEvidence(); // this will clear previous evidence on the model

To perform an inference on a variable, as an example if you want the marginal of P (2) , use the query () method as
in the example below:

BayesianFactor pABO = bp.query (A);

// P(A | B=0, C=1)
evidence = new TIntIntHashMap();
evidence.put (B, 0);
evidence.put (C, 1);

If you want to use evidence, you need to create first a TInt IntHashMap that will include the state of the various
variables, in the belo case we query for P (A | B=0):

BayesianFactor bp.query (A);

Full example:

public class BeliefPropagation{

public static void main(String[] args) {
/# Define your Bayesian Network model =/

BayesianNetwork model = new BayesianNetwork();
A = model.addVariable(2);

(continues on next page)

13




Crema Documentation, Release 1.0

(continued from previous page)

—model

B
c

model.addVariable (2);
model.addVariable (2);

model.addParent (B, A);
model.addParent (C, A);

// define the Bayesian Factors
factors = new BayesianFactor([3];

factors[A] = new BayesianFactor (model.getDomain (A));
factors[B] = new BayesianFactor (model.getDomain (A, B));
factors[C] = new BayesianFactor (model.getDomain (A, C));

factors[A] .setData (new int[] {A}, new double[]{.4, .6});
factors[B].setData (new int[] {B, A}, new double[]{.3, .7, .7, .3});
factors|[C].setData (new int[] {C, A}, new double[]{.2 8

14

// Assign factors to model
model.setFactors (factors);

// Instantiate the inference algorithm over BayesianFactors using the,

BeliefPropagation<BayesianFactor> bp = new BeliefPropagation<> (model) ;

// perform a full update
BayesianFactor factor = bp.fullPropagation();

// perform the distribution step
bp.distributingEvidence () ;

// perform the collection step
BayesianFactor factor = bp.collectingEvidence();

// Simple Inference

// P(A)
bp.clearEvidence(); // this will clear previous evidence on the model

BayesianFactor pA = bp.query (A);
// Inference with evidence

// P(A | B=0)

TIntIntHashMap evidence = new TIntIntHashMap () ;

evidence.put (B, 0);

bp.setEvidence (evidence); // this will overwrite previous evidence

BayesianFactor pABO = bp.query (A);

// P(A | B=0, C=1)

evidence = new TIntIntHashMap();
evidence.put (B, 0);
evidence.put (C, 1);
bp.setEvidence (evidence);

BayesianFactor bp.query (A);

(continues on next page)

14

Chapter 6. Bayesian Inference




Crema Documentation, Release 1.0

(continued from previous page)

6.1. Belief Propagation 15




Crema Documentation, Release 1.0

16 Chapter 6. Bayesian Inference



CHAPTER
SEVEN

FACTORS

Credo supports different ways to represent the probability functions defined over the variables. A structure of different
categorization and abstraction around factors have been implemented. At the top of this all we have the concept of
GenericFactor.

17



Crema Documentation, Release 1.0

18 Chapter 7. Factors



CHAPTER
EIGHT

DOMAINS

Table of Contents

* Domain interface
» SimpleDomain

e DomainBuilder
e Strides

— Creating Strides

+ Working with Strides

8.1 Domain interface

Domains in Crema are located in the ch.idsia.crema.model package. They are all instances of the Domain
interface. This simple interface declares basic methods to query the domain about variables and their cardinality.

Domain domain = ...;
domain.getSizes();
domain.getVariables () ;

Note: Returned arrays should never be modified!

8.2 SimpleDomain

The simplest implementation of the Domain interface is the SimpleDomain. This class encapsulates two integer
arrays. One with the variable labels and one with their cardinality.

domain = new SimpleDomain (
int[]{1, 4, 6}, // variables 1, 4, 6
int[]{3, 2, 3} // the corresponding cardinalities

True (domain.contains (6));

19



Crema Documentation, Release 1.0

Warning: When creating a SimpleDomain the list of variables must be sorted! Crema will not automatically
sort them, but for some operations will assume they are.

8.3 DomainBuilder

While creating a SimpleDomain by passing the arrays of variables and their sizes is possible and valid, a
slightly more friendly method is available using the DomainBuilder. Laveraging the ellipses of Java the
DomainBuilder class avoids the explicit creation of the arrays as shown in the following example.

’ dom = DomainBuilder.var (1, 4, 6).size (3, 2, 3);

8.4 Strides

A more sophisticated and more frequently used implementation of the Domain interface is the Strides class. In
addition to the arrays of variables and their cardinality, this class caches the cumulative sizes of the variables in the
provided order. The access to this additional array is seldomly required by the end-user. They are mostly required to
index parts of a probability table.

The St rides class offers a much richer set of functionalities both related to the domain itself and the aforementioned
indexing of probability tables.

8.4.1 Creating Strides

We we first look at how St rides instances can be created conveniently.

Note: The variable’s cardinalities are accumlated starting from the variable at index O.

s domain = new Strides(
int[]1{1, 4, 6}, // variables 1, 4, 6
int[]{3, 2, 3} // the corresponding cardinalities

Again, just as with the SimpleDomain, creating the object specifying the arrays is valid, but not the most readable
solution. The following example shows an alternative way of creation where variables are added along with their
cardinality.

s other = Strides.as(l, 3).and(4, 2).and(6, 3);

Alternative ways to create strides are based on operations on them. Generally Domains are considered unmutable
objects and any alteration will result in a new instance.

ove variable 4 and 6
s smaller = domain.remove (4, 6);

A number of common set operations are available:
* union
* intersect

¢ remove

20 Chapter 8. Domains



Crema Documentation, Release 1.0

Working with Strides

8.4. Strides 21



Crema Documentation, Release 1.0

22 Chapter 8. Domains



CHAPTER
NINE

GRAPHICAL MODELS

Crema includes a few packages to work with probabilistc graphical models. These include support the network repre-
sentations, algorithms and modifiers.

9.1 Working with networks

As an exercise we will be creating a Bayesian Networks with 3 nodes connected in a V shape, as shown in the following
picture.

Graphical Networks are implemented in the models.graphical package and they extend the Graph class. The
class has a generic parameter to specify the concrete Factor used in order to express the probability models that
parametrise the relationships between variables defined by the network.

There are currenlty 2 concrete implementations of graphical networks that differ in the underlying storage of the edges
and nodes. From an inference and algorithmic point of view the actual implementation is irrelevant.

9.1.1 DAG Models

The main implementation for directed acyclic graphs is the DAGModel class. Crema uses JGraphT SimpleGraph to
store the actual graph.

For a Bayesian Network we will use a BayesianFactor.

el<BayesianFactor> model = new DAGModel<>();

addvariable(2); // C
addvariable(3); // A
addvariable(2); // B

Note: In its current implementation crema stores networks using a double adjacency lists. This is for each node in
the network we store the collection of parents and children.

23



https://jgrapht.org/

Crema Documentation, Release 1.0

24 Chapter 9. Graphical Models



CHAPTER
TEN

BAYESIAN NETWORK EXAMPLE

Lets start with an example of Bayesian Network. Later we will look into more detail how to create Credal Networks
and how to work with factors directly.

We will create a vary small Bayesian Network and perform some simple query. The network will contain 3 variables
connected in a V-shape as shown in the following figure

25



Crema Documentation, Release 1.0

26 Chapter 10. Bayesian Network example



CHAPTER
ELEVEN

notes/.

CONTACT AND SUPPORT

./_static/img/idsia.png

Crema has been developed at the Swiss Al Lab IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale). The

members of the development and research team are:
¢ David Huber (david @idsia.ch)
» Rafael Cabaiias (rcabanas@idsia.ch)
¢ Alessandro Antonucci (alessandro@idsia.ch)
* Marco Zaffalon (zaffalon @idsia.ch)
¢ Claudio Bonesana (claudio @idsia.ch)

If you have any question, please use Github issues.

27


http://www.idsia.ch
mailto:david@idsia.ch
mailto:rcabanas@idsia.ch
mailto:alessandro@idsia.ch
mailto:zaffalon@idsia.ch
mailto:claudio@idsia.ch
https://github.com/IDSIA/crema/issues

	Getting Started
	Requirements
	Installation
	Model Definition
	Credal Inference
	Bayesian Inference
	Factors
	Domains
	Graphical Models
	Bayesian Network example
	Contact and Support

