

Crema: A Java Toolbox for Credal Models Algorithms

[image: _static/img/logo.png]

Crema (CREdal Models Algorithms) is an Java library for inference in credal networks. The main features of Crema are:

	Provides a simple API for the definition of credal networks.

	CREMA embeds exact and approximate algorithms for credal inference.

	Models can be loaded and exported in UAI-based format for credal networks.

Quick Start

	Getting Started

	Requirements

	Installation

Guides

	Model Definition

	Credal Inference

	Bayesian Inference

	JavaDoc [https://idsia.github.io/crema/javadoc/]

Tutorials

	Factors

	Domains

	Graphical Models

	Bayesian Network example

Other

	Contact and Support

Getting Started

As a short introduction to Crema, let us consider the following code snippet, in which an
credal network with 2 nodes is defined. Credal sets are specified by enumerating the
extreme points or vertices. Finally, a conditional query is performed.

import ch.idsia.crema.core.ObservationBuilder;
import ch.idsia.crema.core.Strides;
import ch.idsia.crema.factor.credal.vertex.VertexFactor;
import ch.idsia.crema.inference.ve.CredalVariableElimination;
import ch.idsia.crema.model.graphical.DAGModel;

public class Starting {
 public static void main(String[] args) {
 double p = 0.2;
 double eps = 0.0001;

 /* CN defined with vertex Factor */

 // Define the model (with vertex factors)
 DAGModel<VertexFactor> model = new DAGModel<>();
 int A = model.addVariable(3);
 int B = model.addVariable(2);
 model.addParent(B,A);

 // Define a credal set of the partent node
 VertexFactor fu = new VertexFactor(model.getDomain(A), Strides.empty());
 fu.addVertex(new double[]{0., 1-p, p});
 fu.addVertex(new double[]{1-p, 0., p});
 model.setFactor(A,fu);

 // Define the credal set of the child
 VertexFactor fx = new VertexFactor(model.getDomain(B), model.getDomain(A));

 fx.addVertex(new double[]{1., 0.,}, 0);
 fx.addVertex(new double[]{1., 0.,}, 1);
 fx.addVertex(new double[]{0., 1.,}, 2);

 model.setFactor(B,fx);

 // Run exact inference
 CredalVariableElimination inf = new CredalVariableElimination();
 inf.query(model, ObservationBuilder.observe(B,0), A);

 }
}

Requirements

System

Crema requires Java 11 or higher and maven (https://maven.apache.org).
Tests have been done under Linux Ubuntu and macOS with openjdk 11 and 12.

Package Dependencies

Crema contains the dependencies shown below which are transparently
managed with maven.

	ch.javasoft.polco:polco:jar:4.7.1:compile

	colt:colt:jar:1.2.0:compile

	com.github.quickhull3d:quickhull3d:jar:1.0.0:compile

	com.google.code.findbugs:jsr305:jar:3.0.2:compile

	com.google.errorprone:error_prone_annotations:jar:2.3.4:compile

	com.google.guava:failureaccess:jar:1.0.1:compile

	com.google.guava:guava:jar:28.2-jre:compile

	com.google.guava:listenablefuture:jar:9999.0-empty-to-avoid-conflict-with-guava:compile

	com.google.j2objc:j2objc-annotations:jar:1.3:compile

	com.joptimizer:joptimizer:jar:3.5.1:compile

	com.opencsv:opencsv:jar:5.2:compile

	commons-beanutils:commons-beanutils:jar:1.9.4:compile

	commons-cli:commons-cli:jar:1.4:compile

	commons-collections:commons-collections:jar:3.2.2:compile

	commons-logging:commons-logging:jar:1.2:compile

	concurrent:concurrent:jar:1.3.4:compile

	javax.validation:validation-api:jar:1.1.0.Final:compile

	junit:junit:jar:4.13.1:compile

	log4j:log4j:jar:1.2.14:compile

	net.sf.lpsolve:lp_solve:jar:5.5.2:compile

	net.sf.trove4j:trove4j:jar:3.0.3:compile

	net.sourceforge.csparsej:csparsej:jar:1.1.1:compile

	org.apache.commons:commons-collections4:jar:4.4:compile

	org.apache.commons:commons-csv:jar:1.3:compile

	org.apache.commons:commons-lang3:jar:3.4:compile

	org.apache.commons:commons-math3:jar:3.6.1:compile

	org.apache.commons:commons-text:jar:1.8:compile

	org.apiguardian:apiguardian-api:jar:1.0.0:test

	org.checkerframework:checker-qual:jar:2.10.0:compile

	org.eclipse.persistence:org.eclipse.persistence.asm:jar:2.6.2:compile

	org.eclipse.persistence:org.eclipse.persistence.core:jar:2.6.2:compile

	org.glassfish:javax.json:jar:1.0.4:compile

	org.hamcrest:hamcrest-core:jar:1.3:compile

	org.jgrapht:jgrapht-core:jar:1.1.0:compile

	org.junit.jupiter:junit-jupiter-api:jar:5.4.2:test

	org.junit.jupiter:junit-jupiter-params:jar:5.4.2:test

	org.junit.platform:junit-platform-commons:jar:1.4.2:test

	org.opentest4j:opentest4j:jar:1.1.1:test

	org.slf4j:slf4j-api:jar:1.7.7:compile

Installation

Crema can be easily included at any maven project. For this, add the following code in the pom.xml:

<repositories>
 <repository>
 <id>cremaRepo</id>
 <url>https://raw.github.com/idsia/crema/mvn-repo/</url>
 </repository>
</repositories>

<dependencies>
 <dependency>
 <groupId>ch.idsia</groupId>
 <artifactId>crema</artifactId>
 <version>0.1.6</version>
 <scope>compile</scope>
 </dependency>
</dependencies>

Model Definition

Credal Set Specification

For the definition of a credal set, the domains should be first specified.
Discrete variable domains in Crema are managed with objects of class Strides.
Then, for the definition of a credal set defined by its vertices, create an object
of class VertexFactor as shown below.

// Define the domains
Strides strides_left = DomainBuilder.var(0).size(3).strides();
Strides strides_right = Strides.empty();

double p = 0.2;

// define a marginal vertex factor
VertexFactor f0 = new VertexFactor(strides_left, strides_right);
f0.addVertex(new double[]{p, 0, 1-p});
f0.addVertex(new double[]{0, p, 1-p});

Similarly, a conditional credal set can be define as shown in the following code.

// define a conditional vertex factor
strides_left = DomainBuilder.var(1).size(2).strides();
strides_right = DomainBuilder.var(0).size(3).strides();

VertexFactor f1 = new VertexFactor(strides_left, strides_right); //K(vars[1]|[0])

// when adding the extreme points, value of the conditioning variables should be specified
f1.addVertex(new double[]{0.4, 0.6}, 0);
f1.addVertex(new double[]{0.2, 0.8}, 0);

f1.addVertex(new double[]{0.3, 0.7}, 1);
f1.addVertex(new double[]{0.4, 0.6}, 1);

f1.addVertex(new double[]{0.3, 0.7}, 2);
f1.addVertex(new double[]{0.4, 0.6}, 2);

Crema also allows the specification of credal sets by defining
its constraints. This is done with the class SeparateHalfspaceFactor.

SeparateHalfspaceFactor f0_constr = new SeparateHalfspaceFactor(strides_left, Strides.empty());

// add constraints
f0_constr.addConstraint(new double[]{1., 1., 0.,}, Relationship.EQ, p);
f0_constr.addConstraint(new double[]{0., 0., 1.,}, Relationship.EQ, 1-p);

// normalization constraint
f0_constr.addConstraint(new double[]{1., 1., 1.,}, Relationship.EQ, 1);

// positive constraints
f0_constr.addConstraint(new double[]{1., 0., 0.,}, Relationship.GEQ, 0);
f0_constr.addConstraint(new double[]{0., 1., 0.,}, Relationship.GEQ, 0);
f0_constr.addConstraint(new double[]{0., 0., 1.,}, Relationship.GEQ, 0);

Credal Network Specification

For defining a credal network, create an object of class SparseModel, specify
the structure of the graph and associate the factors.

DAGModel<VertexFactor> cnet = new DAGModel<>();
int X0 = cnet.addVariable(3);
int X1 = cnet.addVariable(2);
cnet.addParent(X1,X0);

// Set the factors
cnet.setFactor(X0, f0);
cnet.setFactor(X1, f1);

Credal Inference

Crema provides exact and approximate inference algorithms over credal networks.
For the exact one, create an object of class CredalVariableElimination and
run the query. The result is an object of class VertexFactor.

// set up the inference and run the queries
CredalVariableElimination inf = new CredalVariableElimination();
VertexFactor res1 = inf.query(cnet, ObservationBuilder.observe(X0, 0), X1);
VertexFactor res2 = inf.query(cnet, X0);

double[][][] vertices = res1.getData();

Approximate inference can be done by means of linear programming. For this, create
the an object of class CredalApproxLP and then run the query. Note
that the output is an IntervalFactor.

CredalApproxLP inf = new CredalApproxLP();
IntervalFactor res1 = inf.query(cnet, ObservationBuilder.observe(X0, 0), X1);
IntervalFactor res2 = inf.query(cnet, X1);

double[] lbound = res1.getLower();
double[] ubound = res1.getUpper();

Bayesian Inference

Crema provides useful algorithm for precise inference on Bayesian networks.

Belief Propagation

The BeliefPropagation inference algorithm works on the BayesianFactors of a BayesainNetwork.

First instantiate the inference algorithm object using the model. The inference engine will build an internal
JunctionTree that will be used for the following queries. Then remember to call fullPropagation() to update
the model. This will return the posterior of a variable considered the root of the internal JunctionTree.

		// P(A)
		bp.clearEvidence(); // this will clear previous evidence on the model

To perform an inference on a variable, as an example if you want the marginal of P(A), use the query() method as
in the example below:

		BayesianFactor pAB0 = bp.query(A);

		// P(A | B=0, C=1)
		evidence = new TIntIntHashMap();
		evidence.put(B, 0);
		evidence.put(C, 1);

If you want to use evidence, you need to create first a TIntIntHashMap that will include the state of the various
variables, in the belo case we query for P(A | B=0):

		BayesianFactor bp.query(A);

	}
}

Full example:

public class BeliefPropagation{

	public static void main(String[] args) {
		/* Define your Bayesian Network model */

		BayesianNetwork model = new BayesianNetwork();
		A = model.addVariable(2);
		B = model.addVariable(2);
		C = model.addVariable(2);

		model.addParent(B, A);
		model.addParent(C, A);

		// define the Bayesian Factors
		factors = new BayesianFactor[3];

		factors[A] = new BayesianFactor(model.getDomain(A));
		factors[B] = new BayesianFactor(model.getDomain(A, B));
		factors[C] = new BayesianFactor(model.getDomain(A, C));

		factors[A].setData(new int[]{A}, new double[]{.4, .6});
		factors[B].setData(new int[]{B, A}, new double[]{.3, .7, .7, .3});
		factors[C].setData(new int[]{C, A}, new double[]{.2, .8, .8, .2});

		// Assign factors to model
		model.setFactors(factors);

		// Instantiate the inference algorithm over BayesianFactors using the model

		BeliefPropagation<BayesianFactor> bp = new BeliefPropagation<>(model);

		// perform a full update
		BayesianFactor factor = bp.fullPropagation();

		// perform the distribution step
		bp.distributingEvidence();

		// perform the collection step
		BayesianFactor factor = bp.collectingEvidence();

		// Simple Inference

		// P(A)
		bp.clearEvidence(); // this will clear previous evidence on the model

		BayesianFactor pA = bp.query(A);

		// Inference with evidence

		// P(A | B=0)
		TIntIntHashMap evidence = new TIntIntHashMap();
		evidence.put(B, 0);
		bp.setEvidence(evidence); // this will overwrite previous evidence

		BayesianFactor pAB0 = bp.query(A);

		// P(A | B=0, C=1)
		evidence = new TIntIntHashMap();
		evidence.put(B, 0);
		evidence.put(C, 1);
		bp.setEvidence(evidence);

		BayesianFactor bp.query(A);

	}
}

Factors

Credo supports different ways to represent the probability functions defined over the variables. A structure of different categorization
and abstraction around factors have been implemented. At the top of this all we have the concept of GenericFactor.

Domains

Table of Contents

	Domain interface

	SimpleDomain

	DomainBuilder

	Strides

	Creating Strides

	Working with Strides

Domain interface

Domains in Crema are located in the ch.idsia.crema.model package.
They are all instances of the Domain interface.
This simple interface declares basic methods to query the domain about variables and their cardinality.

Domain domain = ...;
domain.getSizes();
domain.getVariables();

Note

Returned arrays should never be modified!

SimpleDomain

The simplest implementation of the Domain interface is the SimpleDomain.
This class encapsulates two integer arrays. One with the variable labels and one with their cardinality.

 domain = new SimpleDomain(
int[]{1, 4, 6}, // variables 1, 4, 6
int[]{3, 2, 3} // the corresponding cardinalities

True(domain.contains(6));

Warning

When creating a SimpleDomain the list of variables must be sorted!
Crema will not automatically sort them, but for some operations will assume they are.

DomainBuilder

While creating a SimpleDomain by passing the arrays of variables and their sizes is possible and valid,
a slightly more friendly method is available using the DomainBuilder.
Laveraging the ellipses of Java the DomainBuilder class avoids the explicit creation of the arrays as shown in the following example.

 dom = DomainBuilder.var(1, 4, 6).size(3, 2, 3);

Strides

A more sophisticated and more frequently used implementation of the Domain interface is the Strides class.
In addition to the arrays of variables and their cardinality, this class caches the cumulative sizes of the variables in the provided order.
The access to this additional array is seldomly required by the end-user. They are mostly required
to index parts of a probability table.

The Strides class offers a much richer set of functionalities both
related to the domain itself and the aforementioned indexing of probability tables.

Creating Strides

We we first look at how Strides instances can be created conveniently.

Note

The variable’s cardinalities are accumlated starting from the variable at index 0.

s domain = new Strides(
int[]{1, 4, 6}, // variables 1, 4, 6
int[]{3, 2, 3} // the corresponding cardinalities

Again, just as with the SimpleDomain, creating the object specifying the arrays is valid, but not the most readable solution.
The following example shows an alternative way of creation where variables are added along with their cardinality.

s other = Strides.as(1, 3).and(4, 2).and(6, 3);

Alternative ways to create strides are based on operations on them. Generally Domains are considered unmutable objects and any alteration will result in a new instance.

ove variable 4 and 6
s smaller = domain.remove(4, 6);

A number of common set operations are available:

	union

	intersect

	remove

Working with Strides

Graphical Models

Crema includes a few packages to work with probabilistc graphical models.
These include support the network representations, algorithms and modifiers.

Working with networks

As an exercise we will be creating a Bayesian Networks with 3 nodes connected in a V shape, as shown in the
following picture.

digraph example1 {
 A -> C;
 B -> C;
}Graphical Networks are implemented in the models.graphical package and they extend the Graph class.
The class has a generic parameter to specify the concrete Factor used in order to express the probability models that
parametrise the relationships between variables defined by the network.

There are currenlty 2 concrete implementations of graphical networks that differ in the underlying storage of the edges and nodes.
From an inference and algorithmic point of view the actual implementation is irrelevant.

DAG Models

The main implementation for directed acyclic graphs is the DAGModel class.
Crema uses JGraphT [https://jgrapht.org/] SimpleGraph to store the actual graph.

For a Bayesian Network we will use a BayesianFactor.

el<BayesianFactor> model = new DAGModel<>();

addVariable(2); // C
addVariable(3); // A
addVariable(2); // B

Note

In its current implementation crema stores networks using a double adjacency lists. This is for each node in the network we store
the collection of parents and children.

Bayesian Network example

Lets start with an example of Bayesian Network. Later we will look into more detail
how to create Credal Networks and how to work with factors directly.

We will create a vary small Bayesian Network and perform some simple query. The network
will contain 3 variables connected in a V-shape as shown in the following figure

digraph foo {
 "bar" -> "baz";
}

Contact and Support

[image: notes/../_static/img/idsia.png]
 [http://www.idsia.ch]Crema has been developed at the Swiss AI Lab IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale).
The members of the development and research team are:

	David Huber (david@idsia.ch)

	Rafael Cabañas (rcabanas@idsia.ch)

	Alessandro Antonucci (alessandro@idsia.ch)

	Marco Zaffalon (zaffalon@idsia.ch)

	Claudio Bonesana (claudio@idsia.ch)

If you have any question, please use Github issues [https://github.com/IDSIA/crema/issues].

Index

 sphinx==2.1.2
sphinx-rtd-theme==0.4.3
sphinxcontrib-napoleon==0.6.1
nbsphinx==0.4.2
recommonmark==0.6.0
networkx>=2.2.0<3.0

RST cheat sheet

Subsection

Sub-subsection

More info about RST: Link [https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html].

NOTE: RST requires to leave a blank line between environments.

To add images, this should be always be placed in _static folder:

[image: notes/../_static/img/logo.png]
Add code directly in the rst file:

System.out.println("...")

To add a code from a source file file:

Add inline math latex: \(p(\mathbf{x})\)

Add latex equation:

\[q(z,\theta) \approx p(z,\theta | x_{train})\]

Markdown entry

CreMA is a open-source java toolbox that provides multiple
learning and inference algorithms for credal models.

An example of exact inference in a credal network is given below.

double p = 0.2;
double eps = 0.0001;

/* CN defined with vertex Factor */

// Define the model (with vertex factors)
SparseModel model = new SparseModel();
int u = model.addVariable(3);
int x = model.addVariable(2);
model.addParent(x,u);

// Define a credal set of the partent node
VertexFactor fu = new VertexFactor(model.getDomain(u), Strides.empty());
fu.addVertex(new double[]{0., 1-p, p});
fu.addVertex(new double[]{1-p, 0., p});
model.setFactor(u,fu);

System.out.println(p+" "+(1-p));

// Define the credal set of the child
VertexFactor fx = new VertexFactor(model.getDomain(x), model.getDomain(u));

fx.addVertex(new double[]{1., 0.,}, 0);
fx.addVertex(new double[]{1., 0.,}, 1);
fx.addVertex(new double[]{0., 1.,}, 2);

model.setFactor(x,fx);

// Run exact inference inference
VariableElimination ve = new FactorVariableElimination(model.getVariables());
ve.setFactors(model.getFactors());
System.out.println(ve.run(x));

Installation

Add the following code in the pom.xml of your project:

 <repositories>
 <repository>
 <id>cremaRepo</id>
 <url>https://raw.github.com/idsia/crema/mvn-repo/</url>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>ch.idsia</groupId>
 <artifactId>crema</artifactId>
 <version>0.1.2</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>

Domain Iterators

When interacting with factors and working with indexing of items in the library
you will definitely need to address the issue of the variables ordering and iterators.

In our implementation when an iterator over a domain is requested it will return an instance of
an IndexIterator. This Java iterator will visit the different
instantiations of the variables by means of an integer index. This index enumerates all
the possible configurations of the domain’s variables, sorted order with the variable
at index 0 being the least significant.

In its original ordering and domain the index will simply be an increasing integer value.
In the following example we show this on a domain defined on the binary variables 0 and 2 and
the ternary variable 3.

Strides domain = Strides.var(0,2).and(3, 2).and(2,3);
IndexIterator iterator = domain.getIterator();
while(iterator.hasNext()) {
 System.out.print(iterator.next() + " ");
}

which will output:

0 1 2 3 4 5 6 7 8 9 10 11

Asking the domain we can olso convert this index to the actual states for the variables.
This can be achieved with a call to getStatesFor and for the code above will generate
the sequence of states configurations shown in the following table:

	Offset

	Variable

	0

	2

	3

	0

	0

	0

	0

	1

	1

	0

	0

	2

	0

	1

	0

	3

	1

	1

	0

	4

	0

	2

	0

	5

	1

	2

	0

	6

	0

	0

	1

	7

	1

	0

	1

	8

	0

	1

	1

	9

	1

	1

	1

	10

	0

	2

	1

	11

	1

	2

	1

This is obvioulsy quite a usesless use of an iterator. An simple increasing integer would be enough.
The really interesting use of iterators arises when we want to index a domain fixing some variable,
reordering them or even using a larger domain. These uses are all explored in further detail
hereafter.

Modified variable order

Crema uses mostly a global ordering of the variables. This, however, is not always the most natural and confortable way to index data. To overcome this issue crema offers in some methods to iterate over the indices using a different ordering of the variable.

So if one has a domain that is defined over two binary variables \(\{1, 2\}\), a reordered iterator
over the same domain but with inverse order, will visit all the indices in the order shown below.

digraph G {
 graph [pad=0.05, nodesep=1, ranksep=0.1];
 splines=false;
 clusterrank=local;
 node [shape=box,style=filled,color=lightgray];
 edge[style=invis];

 subgraph cluster_cl1{
 label = "{1,2}";
 style = "dashed";
 color = "red";

 p0[label="0"];
 p1[label="1"];
 p2[label="2"];
 p3[label="3"];
 p0->p1->p2->p3
 }

 subgraph cluster_cl2{
 label = "{2,1}";
 style = "dashed";
 color = "green";

 d0[label="0"];
 d2[label="2"];
 d1[label="1"];
 d3[label="3"];
 d0->d2->d1->d3
 }

 edge[style=solid, penwidth=1, constraint=false];
 p0->d0;
 p1->d1;
 p2->d2;
 p3->d3;
}In code creating this iterator can be done directly from the Strides class, as shown in the following
code snippet:

Strides domain = Strides.var(1,2).and(2,2);
IndexIterator iter = domain.getReorderedIterator(new int[] {2,1});
int original = 0;
while (iter.hasNext()) {
 int offset = iter.next();
 // some operation using the updated order
 data[offset] = input[original++];
}

Wider domain

Another useful way to traverse a domain is to expand it with attitional variables. In such configuration
the iterator will not move for different instantiations of these additional variables.

In the following code snipped a domain over variable 0 is visited moving both variable 1 and variable 0.

Strides domain = Strides.var(1,3);
Strides bigger_domain = Strides.var(1,3).and(0,2);

IndexIterator iter = domain.getIterator(bigger_domain);

int target = 0;
while (iter.hasNext()) {
 int offset = iter.next();
 // some operation using the offset
 data[target++] = input[offset];
}

In the following table we show the evolution of the offset within the original domain
for the different states configurations of the two variables of the extended domain.

	target

	Var 0

	Var 1

	offset

	0

	0

	0

	0

	1

	1

	0

	0

	2

	0

	1

	1

	3

	1

	1

	1

	4

	0

	2

	2

	5

	1

	2

	2

Filtered Iterators

One final way to address indexing is by conditioning on some variables. In this setting the domain will
have some variables fixed to some state while the others are going to be iteratred.

In the following example we will take a domain over 3 variables (2 binary and a ternary one) and iterate
over it blocking one of the binary variable.

Strides domain = Strides.var(2,3).and(0,2).and(3,2);
IndexIterator iter = domain.getFiteredIndexIterator(0,1);
while (iter.hasNext()) {
 int offset = iter.next();
 System.out.println(offset);
}

	Offset

	Variable

	0

	2

	3

	1

	1

	0

	0

	3

	1

	1

	0

	5

	1

	2

	0

	7

	1

	0

	1

	9

	1

	1

	1

	11

	1

	2

	1

 _static/img/logo-doc.png
Crema

_static/img/logo.png
£ Crema

Credal Models Algorithms

_static/img/idsia.png
ISd

i

NS/1SN

IDSTA

_static/minus.png

_static/plus.png

_static/file.png

_static/logo-doc.png
Crema

nav.xhtml

 Table of Contents

 		
 Crema: A Java Toolbox for Credal Models Algorithms

 		
 Getting Started

 		
 Requirements

 		
 System

 		
 Package Dependencies

 		
 Installation

 		
 Model Definition

 		
 Credal Set Specification

 		
 Credal Network Specification

 		
 Credal Inference

 		
 Bayesian Inference

 		
 Belief Propagation

 		
 Factors

 		
 Domains

 		
 Domain interface

 		
 SimpleDomain

 		
 DomainBuilder

 		
 Strides

 		
 Creating Strides

 		
 Graphical Models

 		
 Working with networks

 		
 DAG Models

 		
 Bayesian Network example

 		
 Contact and Support

