

Crema: A Java Toolbox for Credal Models Algorithms

[image: _images/logo.png]

Crema (CREdal Models Algorithms) is an Java library for inference in credal networks. The main features of Crema are:

	Provides a simple API for the definition of credal networks.

	CREMA embeds exact and approximate algorithms for credal inference.

	Models can be loaded and exported in UAI-based format for credal networks.

Quick Start

	Installation

	Getting Started

	Requirements

	JavaDoc [https://idsia.github.io/crema/javadoc/]

Notes

	Factors

	Graphical Models

	Inference Engines

Tutorials

	Domains

	Domain Iterators

	Credal Model

	Credal Inference

	Bayesian Network

	Bayesian Inference

Other

	Contact and Support

Installation

Crema can be easily included at any maven project. For this, add the following code in the pom.xml:

<repositories>
 <repository>
 <id>cremaRepo</id>
 <url>https://raw.github.com/idsia/crema/mvn-repo/</url>
 </repository>
</repositories>

<dependencies>
 <dependency>
 <groupId>ch.idsia</groupId>
 <artifactId>crema</artifactId>
 <version>0.2.1</version>
 <scope>compile</scope>
 </dependency>
</dependencies>

Getting Started

As a short introduction to Crema, let us consider the following code snippet, in which a
credal network with 2 nodes is defined. Credal sets are specified by enumerating the
extreme points or vertices. Finally, a conditional query is performed.

package examples.docs;

import ch.idsia.crema.core.ObservationBuilder;
import ch.idsia.crema.core.Strides;
import ch.idsia.crema.factor.credal.vertex.separate.VertexFactor;
import ch.idsia.crema.factor.credal.vertex.separate.VertexFactorFactory;
import ch.idsia.crema.inference.ve.CredalVariableElimination;
import ch.idsia.crema.model.graphical.DAGModel;

public class Starting {
 public static void main(String[] args) {
 double p = 0.2;
 double eps = 0.0001;

 /* CN defined with vertex Factor */

 // Define the model (with vertex factors)
 DAGModel<VertexFactor> model = new DAGModel<>();
 int A = model.addVariable(3);
 int B = model.addVariable(2);
 model.addParent(B,A);

 // Define a credal set of the partent node
 VertexFactor fu = VertexFactorFactory.factory().domain(model.getDomain(A), Strides.empty())
 .addVertex(new double[]{0., 1-p, p})
 .addVertex(new double[]{1-p, 0., p})
 .get();

 model.setFactor(A,fu);

 // Define the credal set of the child
 VertexFactor fx = VertexFactorFactory.factory().domain(model.getDomain(B), model.getDomain(A))
 .addVertex(new double[]{1., 0.,}, 0)
 .addVertex(new double[]{1., 0.,}, 1)
 .addVertex(new double[]{0., 1.,}, 2)
 .get();

 model.setFactor(B,fx);

 // Run exact inference
 CredalVariableElimination inf = new CredalVariableElimination();
 inf.query(model, ObservationBuilder.observe(B,0), A);

 }
}

Requirements

System

Build the Crema library requires Java 11 or higher and Maven (https://maven.apache.org).

Tests have been done under Linux Ubuntu, Windows 10, and macOS with openjdk 11, 12, and 16. Continuous integration tests
are done using Ubuntu Latest and JDK 11 via GitHub Actions [https://github.com/IDSIA/crema/actions].

Package Dependencies

Crema contains the dependencies shown below which are managed using Maven.

	ch.javasoft.polco:polco:jar:4.7.1:compile

	colt:colt:jar:1.2.0:compile

	com.github.quickhull3d:quickhull3d:jar:1.0.0:compile

	com.google.code.findbugs:jsr305:jar:3.0.2:compile

	com.google.errorprone:error_prone_annotations:jar:2.3.4:compile

	com.google.guava:failureaccess:jar:1.0.1:compile

	com.google.guava:guava:jar:28.2-jre:compile

	com.google.guava:listenablefuture:jar:9999.0-empty-to-avoid-conflict-with-guava:compile

	com.google.j2objc:j2objc-annotations:jar:1.3:compile

	com.joptimizer:joptimizer:jar:3.5.1:compile

	com.opencsv:opencsv:jar:5.2:compile

	commons-beanutils:commons-beanutils:jar:1.9.4:compile

	commons-cli:commons-cli:jar:1.4:compile

	commons-collections:commons-collections:jar:3.2.2:compile

	commons-logging:commons-logging:jar:1.2:compile

	concurrent:concurrent:jar:1.3.4:compile

	javax.validation:validation-api:jar:1.1.0.Final:compile

	junit:junit:jar:4.13.1:compile

	log4j:log4j:jar:1.2.14:compile

	net.sf.lpsolve:lp_solve:jar:5.5.2:compile

	net.sf.trove4j:trove4j:jar:3.0.3:compile

	net.sourceforge.csparsej:csparsej:jar:1.1.1:compile

	org.apache.commons:commons-collections4:jar:4.4:compile

	org.apache.commons:commons-csv:jar:1.3:compile

	org.apache.commons:commons-lang3:jar:3.4:compile

	org.apache.commons:commons-math3:jar:3.6.1:compile

	org.apache.commons:commons-text:jar:1.8:compile

	org.apiguardian:apiguardian-api:jar:1.0.0:test

	org.checkerframework:checker-qual:jar:2.10.0:compile

	org.eclipse.persistence:org.eclipse.persistence.asm:jar:2.6.2:compile

	org.eclipse.persistence:org.eclipse.persistence.core:jar:2.6.2:compile

	org.glassfish:javax.json:jar:1.0.4:compile

	org.hamcrest:hamcrest-core:jar:1.3:compile

	org.jgrapht:jgrapht-core:jar:1.1.0:compile

	org.junit.jupiter:junit-jupiter-api:jar:5.4.2:test

	org.junit.jupiter:junit-jupiter-params:jar:5.4.2:test

	org.junit.platform:junit-platform-commons:jar:1.4.2:test

	org.opentest4j:opentest4j:jar:1.1.1:test

	org.slf4j:slf4j-api:jar:1.7.7:compile

External Dipendencies

In order to compile Crema from source code, two dependencies not available in Maven repositories need to be installed
manually.

lpsolve

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.2:get -DgroupId=net.sf.lpsolve -DartifactId=lp_solve -Dversion=5.5.2 -Dpackaging=jar -DremoteRepositories=https://raw.github.com/idsia/crema/mvn-repo/

polco

mvn org.apache.maven.plugins:maven-dependency-plugin:3.1.2:get -DgroupId=ch.javasoft.polco -DartifactId=polco -Dversion=4.7.1 -Dpackaging=jar -DremoteRepositories=https://raw.github.com/idsia/crema/mvn-repo/

Factors

Table of Contents

	Generic Factors Interfaces

	Credal Factors

	Bayesian Factors

	Symbolic Factors

	Implementation

	Factory

	Conversion

Crema supports different ways to represent the probability functions defined over the variables. A structure of different categorization
and abstraction around factors have been implemented. At the top of this all we have the concept of GenericFactor.

The basic idea behind the whole class hierarchy is to have immutable implementation of different interface. As an example,
a VertexFactor is an interface for many different implementation such as VertexLogFactor and VertexFunctionFactor.
Inference algorithm should always work with the factor interfaces, such as VertexFactor. This let us hide the different
kind of implementation and their complexity: to perform an inference the algorithm do not care how a factor implementation
stores its data or if the data are generated by a function. This will grant Crema a high flexibility on multiple definitions
of a factor.

Generic Factors Interfaces

[image: digraph GenericFactors { gf [shape=box,label="(I) GenericFactor"]; ff [shape=box,label="(I) FilterableFactor<F>"]; of [shape=box,label="(I) OperableFactor<F>"]; lf [shape=box,label="(I) LinearFactor"]; ss [shape=box,label="(I) SeparatelySpecified<F>"]; evf [shape=box,label="(I) ExtensiveVertexFactor"]; sf [shape=box,label="(I) SymbolicFactor"]; bf [shape=box,label="(I) BayesianFactor"]; vf [shape=box,label="(I) VertexFactor"]; slf [shape=box,label="(I) SeparateLinearFactor<F>"]; elf [shape=box,label="(I) ExtensiveLinearFactor<F>"]; if [shape=box,label="(I) IntervalFactor"]; shf [shape=box,label="(I) SeparateHalfspaceFactor"]; if -> slf [color=green]; shf -> slf [color=green]; ss -> ff [color=green]; of -> ff [color=green]; ff -> gf [color=green]; lf -> gf [color=green]; evf -> of [color=green]; sf -> of [color=green]; bf -> of [color=green]; bf -> ss [color=green]; vf -> of [color=green]; vf -> ss [color=green]; slf -> ss [color=green]; slf -> lf [color=green]; elf -> lf [color=green]; }]

The image above shows the main class hierarchy for the factors in Crema. The simplest definition of a factor is represented
by the GenericFactor interface. This interface defines the two most basic methods of any factor: the copy() and
the getDomain() methods.

In Crema we have two main different kind of factors: FilterableFactor<F> and LinearFactor. The first is a group of
factors that are able to perform the filter(int, int) operation on itself, while the second represents the group of
factors defined with a linear problem.

Note

Note that these two groups are not separated: as an example, the SeparateLinearFactor is a particular type of
factor that is defined with a linear problem but can also perform the filter operation.

Two other important groups are below the FilterableFactor<F>: the OperableFactor<F> and SeparatelySpecified<F>
factors. The first defines the capability to perform operations such as combine(factor), marginalize(int...),
divide(factor), and normalize(int...). These are all operation used by particular inference algorithm, in particular
Bayesian-base algorithms. The second group, instead, defines the factors that have particular operations over their domains.

Below these main interfaces, we find the implementation of all the types of factors.

Credal Factors

[image: digraph CredalFactors { lf [shape=box,label="(I) LinearFactor"]; ss [shape=box,label="(I) SeparatelySpecified<F>"]; elf [shape=box,label="(I) ExtensiveLinearFactor<F>"]; ehf [shape=box,label="ExtensiveHalfspaceFactor"]; slf [shape=box,label="(I) SeparateLinearFactor<F>"]; if [shape=box,label="(I) IntervalFactor"]; iaf [shape=box,label="(A) IntervalAbstractFactor"]; idf [shape=box,label="IntervalDefaultFactor"]; ilf [shape=box,label="IntervalLogFactor"]; ivf [shape=box,label="IntervalVacuousFactor"]; shf [shape=box,label="(I) SeparateHalfspaceFactor"]; shaf [shape=box,label="(A) SeparateHalfspaceAbstractFactor"]; shdf [shape=box,label="SeparateHalfspaceDefaultFactor"]; vf [shape=box,label="(I) VertexFactor"]; vaf [shape=box,label="VertexAbstractFactor"]; vdf [shape=box,label="VertexDefaultFactor"]; vff [shape=box,label="VertexFunctionFactor"]; vlf [shape=box,label="VertexLogFactor"]; vtf [shape=box,label="VertexDeterministicFactor"]; sscf [shape=box,label="SeparatelySpecifiedCredalFactor<S>"]; cf [shape=box,label="(A) ConditionalFactor<F>"]; evf [shape=box,label="(I) ExtensiveVertexFactor"]; evaf [shape=box,label="(A) ExtensiveVertexAbstractFactor"]; evdf [shape=box,label="ExtensiveVertexDefaultFactor"]; evlf [shape=box,label="ExtensiveVertexLogFactor"]; slf -> lf [color=green]; slf -> ss [color=green]; vf -> ss [color=green]; if -> slf [color=green]; shf -> slf [color=green]; elf -> lf [color=green]; ehf -> elf [style=dashed,color=green]; iaf -> if [style=dashed,color=green]; idf -> iaf; ivf -> idf; ilf -> idf; shaf -> shf [style=dashed,color=green]; shdf -> shaf; vlf -> vdf; vtf -> vdf; vdf -> vaf; vff -> vaf; vaf -> vf [style=dashed,color=green]; sscf -> ss [style=dashed,color=green]; cf -> ss [style=dashed,color=green]; evaf -> evf [style=dashed,color=green]; evdf -> evaf; evlf -> evdf; }]

The credal factors are the main factors that works with Crema. The idea of this library is to offer inferences algorithm
to perform computation over these kind of factors. There we can find the most used factors, such as VertexFactor and
IntervalFactor that are used to specify imprecise probability factors.

Bayesian Factors

[image: digraph BayesianFactors { bf [shape=box,label="(I) BayesianFactor"]; baf [shape=box,label="(A) BayesianAbstractFactor"]; bff [shape=box,label="(A) BayesianFunctionFactor"]; bdf [shape=box,label="BayesianDefaultFactor"]; blf [shape=box,label="BayesianLogFactor"]; btf [shape=box,label="BayesianDeterministicFactor"]; bflf [shape=box,label="(A) BayesianFunctionLogFactor"]; bgf [shape=box,label="BayesianLogicFactor"]; bnf [shape=box,label="BayesianNotFactor"]; nor [shape=box,label="BayesianNoisyOrFactor"]; and [shape=box,label="BayesianAndFactor"]; or [shape=box,label="BayesianOrFactor"]; nor -> bgf; and -> bgf; or -> bgf; bflf -> bff; bgf -> bff; bnf -> bff; blf -> bdf; btf -> bdf; bdf -> baf; bff -> baf; baf -> bf [style=dashed,color=green]; }]

Bayesian Factors are just a single type of factors that have an huge potential in Crema. These factors implements all
the algebra to perform Bayesian inference over BayesianNetworks and other particular kind of models.

These factors also contains a special version of the bayesian factor: the logic factors. These factors implement a
logic binary operation, such as and, or, or not, that can be used to implement logics in a Bayesian network.

Symbolic Factors

[image: digraph SymbolicFactors { sf [shape=box,label="(I) SymbolicFactor"]; saf [shape=box,label="(A) SymbolicAbstractFactor"]; cf [shape=box,label="CombinedFactor"]; df [shape=box,label="DividedFactor"]; mf [shape=box,label="MarginalizedFactor"]; ff [shape=box,label="FilteredFactor"]; pf [shape=box,label="PriorFactor"]; nf [shape=box,label="NormalizedFactor"]; cf -> saf; df -> saf; mf -> saf; ff -> saf; pf -> saf; nf -> saf; saf -> sf [style=dashed,color=green]; }]

A SymbolicFactor is a special factor that does not perform any kind of operation. The use of these factors is to
build a diagram of the operations so that it is possible to visualize the operations done and at the same time optimize
and reuse them by changing the input factors.

Note

The PriorFactor is a special factor that can wrap any kind of GenericFactor. These are the inputs node of a
workflow diagram produced by any inference algorithm that run over a DAGModel of SymbolicFactors.

Implementation

As stated before, the main idea is to let the algorithms work with a common interface that defines a factor while the
implementation, in other words how the data are stored and managed for each type of factor, is hidden. For this reason,
we have multiple implementations available for each factor interface.

Note

Since most of the implementation have a common set of fields and methods, the majority of these interfaces are first
implemented in abstract classes. Then all the definition of factor extends this abstract class.

Across multiple hierarchies, we have some common way of implement a factor. As an example we can have FunctionFactors.
These factors does not store the data in them but have a function (often a lambda function) that generates the
requested data on the fly. One interesting implementation of this mechanics is available in the BayesianLogicFactor
and the classes that extends this one. These logic factors implements a logic function and does not have any kind of storage,
making them faster and more efficient at runtime.

Another common implementation pattern is to differentiate between factors in log-space and not. All the factors that
are called like *DefaultFactor are the most simple implementation of a factor in a normal space. The factors
that works and are optimizer for the log-space, instead, are called *LogFactor. Most of the factor interfaces
offers two methods to access the values: one for log (as an example, BayesianFactor#getLogValue(int)) and one for
normal space (following the example, BayesianFactor#getValue(int)).

Factory

Although all factors can be instantiated directly with the new keyord, many factor groups have a so called factory
class. This is an helper class that simplify the build of the factors with helper methods and functions. All factor
classes have the factory() static method that will instantiate the factory. All the methods of a factory can be
chained together in a fluent way.

To obtain a factor once the factory setup is complete, just call one of the builder methods like get() or log().

Note

Check the latest version of the JavaDoc [https://idsia.github.io/crema/javadoc/] to find more on this argument.

Conversion

In the package ch.idsia.crema.factor.convert we collected a conversion classes that can be used to convert one factor
to another. These converter classes does not cover all the possible and doable combination. In certain cases, to perform
a conversion, multiple converter need to be used.

Graphical Models

Crema includes a few packages to work with probabilistc graphical models.
These include support the network representations, algorithms and modifiers.

Working with networks

As an exercise we will be creating a Bayesian Networks with 3 nodes connected in a V shape, as shown in the
following picture.

[image: digraph example1 { A -> C; B -> C; }]

Graphical Networks are implemented in the models.graphical package and they extend the Graph class.
The class has a generic parameter to specify the concrete Factor used in order to express the probability models that
parametrise the relationships between variables defined by the network.

There are currenlty 2 concrete implementations of graphical networks that differ in the underlying storage of the edges and nodes.
From an inference and algorithmic point of view the actual implementation is irrelevant.

DAG Models

The main implementation for directed acyclic graphs is the DAGModel class.
Crema uses JGraphT [https://jgrapht.org/] SimpleGraph object to store the actual graph.

For a Bayesian Network we will use a BayesianFactor.

DAGModel<BayesianFactor> model = new DAGModel<>();

model.addVariable(2); // C
model.addVariable(3); // A
model.addVariable(2); // B

Note

In its current implementation crema stores networks using a double adjacency lists. This is for each node in the network we store
the collection of parents and children.

Inference Engines

Crema offers the generic interface Inference<M, F> to perform an inference on a model using the
query(model, evidence, variable) method.

Note

If not specified otherwise, all the algorithms implementations are state-less; this means that each query are
considered unique and there is no memory of the previous inference queries done with the same object.

The interface requires to specify two generic types: the input model type M, and the output factor type F.

Below an example on how to run an inference on a model built with BayesianFactors using the BeliefPropagation
inference algorithm. This is the simplest way to run an inference.

Inference<DAGModel<BayesianFactor>, BayesianFactor> inf = new BeliefPropagation<>();
BayesianFactor factor = inf.query(model, A);

Note how the inference engine works on a model of type DAGModel<BayesianFactor> and that the output of the inference
is an object of type BayesianFactor.

Evidence

In Crema, an evidence is just a map, an object of type TIntIntMap. If no evidence is needed, then the Inference<M, F>
interface offers an utility query(model, variable) method without the need to pass an empty map.

Multiple queries

Crema offers other kind of inference interfaces. These interfaces are intended to offer a more optimized way to perform
multiple and joined queries.

Note

In te current version, there are no algorithms that support and implement these interfaces. If an algorithm offers a
special way to perform these queries, it will be required to instantiate it as its own class instead of using the
Inference<M, F> interface.

Domains

Table of Contents

	Domain interface

	SimpleDomain

	DomainBuilder

	Strides

	Creating Strides

	Working with Strides

Domain interface

Domains in Crema are located in the ch.idsia.crema.model package.
They are all instances of the Domain interface.
This simple interface declares basic methods to query the domain about variables and their cardinality.

Domain domain = ...;
domain.getSizes();
domain.getVariables();

Note

Returned arrays should never be modified!

SimpleDomain

The simplest implementation of the Domain interface is the SimpleDomain.
This class encapsulates two integer arrays. One with the variable labels and one with their cardinality.

Domain domain = new SimpleDomain(
		new int[]{1, 4, 6}, // variables 1, 4, 6
		new int[]{3, 2, 3} // the corresponding cardinalities
);

assertTrue(domain.contains(6));

Warning

When creating a SimpleDomain the list of variables must be sorted!
Crema will not automatically sort them, but for some operations will assume they are.

DomainBuilder

While creating a SimpleDomain by passing the arrays of variables and their sizes is possible and valid,
a slightly more friendly method is available using the DomainBuilder.
Laveraging the ellipses of Java the DomainBuilder class avoids the explicit creation of the arrays as shown in the following example.

Domain dom = DomainBuilder.var(1, 4, 6).size(3, 2, 3);

Strides

A more sophisticated and more frequently used implementation of the Domain interface is the Strides class.
In addition to the arrays of variables and their cardinality, this class caches the cumulative sizes of the variables in the provided order.
The access to this additional array is seldomly required by the end-user. They are mostly required
to index parts of a probability table.

The Strides class offers a much richer set of functionalities both
related to the domain itself and the aforementioned indexing of probability tables.

Creating Strides

We we first look at how Strides instances can be created conveniently.

Note

The variable’s cardinalities are accumlated starting from the variable at index 0.

Strides domain = new Strides(
		new int[]{1, 4, 6}, // variables 1, 4, 6
		new int[]{3, 2, 3} // the corresponding cardinalities
);

Again, just as with the SimpleDomain, creating the object specifying the arrays is valid, but not the most readable solution.
The following example shows an alternative way of creation where variables are added along with their cardinality.

Strides other = Strides.as(1, 3).and(4, 2).and(6, 3);

Alternative ways to create strides are based on operations on them. Generally Domains are considered unmutable objects and any alteration will result in a new instance.

// remove variable 4 and 6
Strides smaller = domain.remove(4, 6);

A number of common set operations are available:

	union

	intersect

	remove

Working with Strides

Domain Iterators

When interacting with factors and working with indexing of items in the library
you will definitely need to address the issue of the variables ordering and iterators.

In our implementation when an iterator over a domain is requested it will return an instance of
an IndexIterator. This Java iterator will visit the different
instantiations of the variables by means of an integer index. This index enumerates all
the possible configurations of the domain’s variables, sorted order with the variable
at index 0 being the least significant.

In its original ordering and domain the index will simply be an increasing integer value.
In the following example we show this on a domain defined on the binary variables 0 and 2 and
the ternary variable 3.

Strides domain = Strides.var(0,2).and(3, 2).and(2,3);
IndexIterator iterator = domain.getIterator();
while(iterator.hasNext()) {
 System.out.print(iterator.next() + " ");
}

which will output:

0 1 2 3 4 5 6 7 8 9 10 11

Asking the domain we can olso convert this index to the actual states for the variables.
This can be achieved with a call to getStatesFor and for the code above will generate
the sequence of states configurations shown in the following table:

	Offset

	Variable

	0

	2

	3

	0

	0

	0

	0

	1

	1

	0

	0

	2

	0

	1

	0

	3

	1

	1

	0

	4

	0

	2

	0

	5

	1

	2

	0

	6

	0

	0

	1

	7

	1

	0

	1

	8

	0

	1

	1

	9

	1

	1

	1

	10

	0

	2

	1

	11

	1

	2

	1

This is obvioulsy quite a usesless use of an iterator. An simple increasing integer would be enough.
The really interesting use of iterators arises when we want to index a domain fixing some variable,
reordering them or even using a larger domain. These uses are all explored in further detail
hereafter.

Modified variable order

Crema uses mostly a global ordering of the variables. This, however, is not always the most natural and confortable way to index data. To overcome this issue crema offers in some methods to iterate over the indices using a different ordering of the variable.

So if one has a domain that is defined over two binary variables \(\{1, 2\}\), a reordered iterator
over the same domain but with inverse order, will visit all the indices in the order shown below.

[image: digraph G { graph [pad=0.05, nodesep=1, ranksep=0.1]; splines=false; clusterrank=local; node [shape=box,style=filled,color=lightgray]; edge[style=invis]; subgraph cluster_cl1{ label = "{1,2}"; style = "dashed"; color = "red"; p0[label="0"]; p1[label="1"]; p2[label="2"]; p3[label="3"]; p0->p1->p2->p3 } subgraph cluster_cl2{ label = "{2,1}"; style = "dashed"; color = "green"; d0[label="0"]; d2[label="2"]; d1[label="1"]; d3[label="3"]; d0->d2->d1->d3 } edge[style=solid, penwidth=1, constraint=false]; p0->d0; p1->d1; p2->d2; p3->d3; }]

In code creating this iterator can be done directly from the Strides class, as shown in the following
code snippet:

Strides domain = Strides.var(1,2).and(2,2);
IndexIterator iter = domain.getReorderedIterator(new int[] {2,1});
int original = 0;
while (iter.hasNext()) {
 int offset = iter.next();
 // some operation using the updated order
 data[offset] = input[original++];
}

Wider domain

Another useful way to traverse a domain is to expand it with attitional variables. In such configuration
the iterator will not move for different instantiations of these additional variables.

In the following code snipped a domain over variable 0 is visited moving both variable 1 and variable 0.

Strides domain = Strides.var(1,3);
Strides bigger_domain = Strides.var(1,3).and(0,2);

IndexIterator iter = domain.getIterator(bigger_domain);

int target = 0;
while (iter.hasNext()) {
 int offset = iter.next();
 // some operation using the offset
 data[target++] = input[offset];
}

In the following table we show the evolution of the offset within the original domain
for the different states configurations of the two variables of the extended domain.

	target

	Var 0

	Var 1

	offset

	0

	0

	0

	0

	1

	1

	0

	0

	2

	0

	1

	1

	3

	1

	1

	1

	4

	0

	2

	2

	5

	1

	2

	2

Filtered Iterators

One final way to address indexing is by conditioning on some variables. In this setting the domain will
have some variables fixed to some state while the others are going to be iteratred.

In the following example we will take a domain over 3 variables (2 binary and a ternary one) and iterate
over it blocking one of the binary variable.

Strides domain = Strides.var(2,3).and(0,2).and(3,2);
IndexIterator iter = domain.getFiteredIndexIterator(0,1);
while (iter.hasNext()) {
 int offset = iter.next();
 System.out.println(offset);
}

	Offset

	Variable

	0

	2

	3

	1

	1

	0

	0

	3

	1

	1

	0

	5

	1

	2

	0

	7

	1

	0

	1

	9

	1

	1

	1

	11

	1

	2

	1

Credal Model

Credal Set Specification

For the definition of a credal set, the domains should be first specified.
Discrete variable domains in Crema are managed with objects of class Strides.
Then, for the definition of a credal set defined by its vertices, create an object
of class VertexFactor as shown below.

// Define the domains
Strides strides_left = DomainBuilder.var(0).size(3).strides();
Strides strides_right = Strides.empty();

double p = 0.2;

// define a marginal vertex factor
VertexFactor f0 = VertexFactorFactory.factory().domain(strides_left, strides_right)
		.addVertex(new double[]{p, 0, 1 - p})
		.addVertex(new double[]{0, p, 1 - p})
		.get();

Similarly, a conditional credal set can be define as shown in the following code.

// define a conditional vertex factor
strides_left = DomainBuilder.var(1).size(2).strides();
strides_right = DomainBuilder.var(0).size(3).strides();

VertexFactor f1 = VertexFactorFactory.factory().domain(strides_left, strides_right) // K(vars[1]|[0])
		// when adding the extreme points, value of the conditioning variables should be specified
		.addVertex(new double[]{0.4, 0.6}, 0)
		.addVertex(new double[]{0.2, 0.8}, 0)

		.addVertex(new double[]{0.3, 0.7}, 1)
		.addVertex(new double[]{0.4, 0.6}, 1)

		.addVertex(new double[]{0.3, 0.7}, 2)
		.addVertex(new double[]{0.4, 0.6}, 2)

		.get();

Crema also allows the specification of credal sets by defining
its constraints. This is done with the class SeparateHalfspaceFactor.

SeparateHalfspaceFactor f0_constr = SeparateHalfspaceFactorFactory.factory().domain(strides_left, Strides.empty())

		// add constraints
		.constraint(new double[]{1., 1., 0.,}, Relationship.EQ, p)
		.constraint(new double[]{0., 0., 1.,}, Relationship.EQ, 1 - p)

		// normalization constraint
		.constraint(new double[]{1., 1., 1.,}, Relationship.EQ, 1)

		// positive constraints
		.constraint(new double[]{1., 0., 0.,}, Relationship.GEQ, 0)
		.constraint(new double[]{0., 1., 0.,}, Relationship.GEQ, 0)
		.constraint(new double[]{0., 0., 1.,}, Relationship.GEQ, 0)
		.get();

Credal Network Specification

For defining a credal network, create an object of class SparseModel, specify
the structure of the graph and associate the factors.

// Define the structure
DAGModel<VertexFactor> cnet = new DAGModel<>();
int X0 = cnet.addVariable(3);
int X1 = cnet.addVariable(2);
cnet.addParent(X1, X0);

// Set the factors
cnet.setFactor(X0, f0);
cnet.setFactor(X1, f1);

Credal Inference

Crema provides exact and approximate inference algorithms over credal networks.
For the exact one, create an object of class CredalVariableElimination and
run the query. The result is an object of class VertexFactor.

// set up the inference and run the queries
CredalVariableElimination inf = new CredalVariableElimination();
VertexFactor res1 = inf.query(cnet, ObservationBuilder.observe(X0, 0), X1);
VertexFactor res2 = inf.query(cnet, X0);

Approximate inference can be done by means of linear programming. For this, create
the an object of class CredalApproxLP and then run the query. Note
that the output is an IntervalFactor.

// set up the inference and run the queries
CredalApproxLP<SeparateHalfspaceFactor> inf = new CredalApproxLP<>();
IntervalFactor res1 = inf.query(cnet, ObservationBuilder.observe(X0, 0), X1);
IntervalFactor res2 = inf.query(cnet, X1);

double[] lbound = res1.getLower();
double[] ubound = res1.getUpper();

Bayesian Network

Lets start with an example of Bayesian Network. We will create a very small model and perform some simple query.

The network will contain 3 variables connected in a V-shape as shown in the following figure:

[image: digraph bn { "A" -> "C"; "B" -> "C"; }]

The first thing to do is to declare our Bayesian Network, the variables, and assign the parents for each variable. In
this case, all variables are binary.

Note

The BayesianNetwork is just a wrapper class of the DAGModel<BayesianFactor> class.

BayesianNetwork model = new BayesianNetwork();

// variables declaration
int A = model.addVariable(2);
int B = model.addVariable(2);
int C = model.addVariable(2);

// parents assignments
model.addParent(C, A);
model.addParent(C, B);

For each variable, the model assign a domain. We need such information to build the factors.

Domain domA = model.getDomain(A);
Domain domB = model.getDomain(B);
Domain domC = model.getDomain(C, A, B);

Finally, there we build a factors for each of the variables. In this example, we show an overview of the many possible
ways to instantiate a factor.

BayesianFactor[] factors = new BayesianFactor[3];

factors[A] = new BayesianDefaultFactor(domA, new double[]{.8, .2});

factors[B] = BayesianFactorFactory.factory().domain(domA)
		.set(.4, 0)
		.set(.6, 1)
		.get();

factors[C] = BayesianFactorFactory.factory().domain(domC)
		.set(.3, 0, 0, 0)
		.set(.7, 0, 0, 1)
		.set(.5, 0, 1, 0)
		.set(.5, 0, 1, 1)
		.set(.4, 1, 0, 0)
		.set(.6, 1, 0, 1)
		.set(.6, 1, 1, 0)
		.set(.4, 1, 1, 1)
		.get();

// factor assignment
model.setFactors(factors);

	Factor A
	We instantiate a new BayesianDefaultFactor from the domain and an array of double values.

	Factor B
	We use the factory to set the probabilities for states 0 and 1.

	Factor C
	We use the factory to set the whole joint probability table for variable C using the states of all the variables
in the domain. In order: C, A, B. Compare the order with the variable order in the definition of domC.

Full example:

package example;

import ch.idsia.crema.core.Domain;
import ch.idsia.crema.factor.bayesian.BayesianDefaultFactor;
import ch.idsia.crema.factor.bayesian.BayesianFactor;
import ch.idsia.crema.factor.bayesian.BayesianFactorFactory;
import ch.idsia.crema.model.graphical.BayesianNetwork;

/**
 * Author: Claudio "Dna" Bonesana
 * Project: crema
 * Date: 27.10.2021 11:33
 */
public class BayesianNetworkExample {
	public static void main(String[] args) {

		// [1] model declaration
		BayesianNetwork model = new BayesianNetwork();

		// variables declaration
		int A = model.addVariable(2);
		int B = model.addVariable(2);
		int C = model.addVariable(2);

		// parents assignments
		model.addParent(C, A);
		model.addParent(C, B);

		// [2] domains definitions
		Domain domA = model.getDomain(A);
		Domain domB = model.getDomain(B);
		Domain domC = model.getDomain(C, A, B);

		// [3] factor definition
		BayesianFactor[] factors = new BayesianFactor[3];

		factors[A] = new BayesianDefaultFactor(domA, new double[]{.8, .2});

		factors[B] = BayesianFactorFactory.factory().domain(domA)
				.set(.4, 0)
				.set(.6, 1)
				.get();

		factors[C] = BayesianFactorFactory.factory().domain(domC)
				.set(.3, 0, 0, 0)
				.set(.7, 0, 0, 1)
				.set(.5, 0, 1, 0)
				.set(.5, 0, 1, 1)
				.set(.4, 1, 0, 0)
				.set(.6, 1, 0, 1)
				.set(.6, 1, 1, 0)
				.set(.4, 1, 1, 1)
				.get();

		// factor assignment
		model.setFactors(factors);

		// [4] end
	}
}

Bayesian Inference

Crema provides useful algorithms for both precise and approximate inference on Bayesian networks and graphs.

Table of Contents

	Exact Inference

	Variable Elimination

	Belief Propagation

	Approximate Inference

	Sampling

	Loopy Belief Propagation

Exact Inference

Variable Elimination

The VariableElimination inference algorithm uses a given elimination sequence in order to perform the inference.
Each elimination sequence depends on the structure of the model and the variable to query.

The implementation of this algorithm in Crema need an algebra to work. If this algebra is available externally, it is
possible to use the VariableElimination<F> implementation; while if the existing FactorAlgebra is enough for the
used factor, the wrapper class FactorVariableElimination<F> can be used.

Belief Propagation

The BeliefPropagation inference algorithm works by analyzing the model and build a JunctionTree. Then it will
use the message passing algorithm to performing the inference.

Each call to the query() method will build a new JunctionTree from zero.

To perform an inference on a variable, as an example if you want the marginal of P(A), use the query() method as
in the example below:

// P(A)
BayesianFactor pA = inf.query(model, A);

If you want to use evidence, you need to create first a TIntIntHashMap that will include the state of the various
variables, in the belo case we query for P(A | B=0):

// P(A | B=0)
TIntIntHashMap evidence = new TIntIntHashMap();
evidence.put(B, 0);

BayesianFactor pAb0 = inf.query(model, evidence, A);

// P(A | B=0, C=1)
evidence = new TIntIntHashMap();
evidence.put(B, 0);
evidence.put(C, 1);

BayesianFactor pAb0c1 = inf.query(model, evidence, A);

This algorithm offers other ways to perform an inference. It is possible to build such tree once and query multiple variables at the same time. First instantiate the inference
algorithm object. The inference engine will build an internal JunctionTree that will be used for the following queries.

BeliefPropagation<BayesianFactor> bp = new BeliefPropagation<>();

Then remember to call fullPropagation() to update the tree. This will
return the posterior of a variable considered the root of the internal JunctionTree. This root variable is also the
query variable.

factor = bp.fullPropagation(model, A);

// Perform the distribution step
bp.distributingEvidence();

// Perform the collection step
factor = bp.collectingEvidence(A);

Approximate Inference

Sampling

Crema offers two implementation of StochasticSampling for BayesianFactor: the LogicSampling and the
LikelihoodWeightingSampling. These sampling algorithms have different levels of precision based on the number of
iterations performed.

Loopy Belief Propagation

This is an approximate version of the BeliefPropagation: is uses the same message passing algorithm but without the
burden to build a junction tree. The performance, and quality, of the algorithm can be managed by the number of
iterations to execute.

Contact and Support

[image: _images/idsia.png]
 [https://www.idsia.ch/]Crema has been developed at the Swiss AI Lab IDSIA (Istituto Dalle Molle di Studi sull’Intelligenza Artificiale),
a not-for-profit research institute for Artificial Intelligence.

The members of the development and research team are:

	David Huber (david@idsia.ch)

	Rafael Cabañas (rcabanas@idsia.ch)

	Alessandro Antonucci (alessandro@idsia.ch)

	Marco Zaffalon (zaffalon@idsia.ch)

	Claudio Bonesana (claudio@idsia.ch)

If you have any question, please use Github issues [https://github.com/IDSIA/crema/issues].

Index

 sphinx==4.2.0
sphinx-rtd-theme==1.0.0
nbsphinx==0.8.7
recommonmark==0.7.1
networkx==2.6.3
graphviz==0.17

RST cheat sheet

Subsection

Sub-subsection

More info about RST: Link [https://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html].

NOTE: RST requires to leave a blank line between environments.

To add images, this should be always be placed in _static folder:

[image: ../_images/logo.png]
Add code directly in the rst file:

System.out.println("...")

To add a code from a source file file:

import ch.idsia.crema.core.DomainBuilder;
import ch.idsia.crema.factor.bayesian.BayesianDefaultFactor;
import ch.idsia.crema.factor.bayesian.BayesianFactor;
import ch.idsia.crema.factor.bayesian.BayesianFactorFactory;
import ch.idsia.crema.model.graphical.BayesianNetwork;

Add inline math latex: \(p(\mathbf{x})\)

Add latex equation:

\[q(z,\theta) \approx p(z,\theta | x_{train})\]

 _images/logo.png
£ Crema

Credal Models Algorithms

_images/graphviz-f2fd7e6f645400bef108b2a39c4654b570296f73.png

_images/idsia.png
=
W
-

L

ISdNS/ISN

_static/minus.png

_static/plus.png

_static/file.png

_images/graphviz-88673241268a3c62d6ad3694b8ade8092f46c35e.png
() IntervalFactor | | (1) SeparateHalfspaceFactor

~N

(1) SymbolicFactor

(1) ExtensiveVertexFactor

(1) BayesianFactor

(1) VertexFactor | | (I) SeparateLincarFactor<F>

(1) ExtensiveLinearFactor<F>

N =

(1) OperableFactor<F>

(1) SeparatelySpecificd<F> (1) LincarFactor

T~

(D) FilterableFactor<F>

N

(1) GenericFactor

_images/graphviz-95adee8b486d86e0850220d9d0fe4a820eff9e37.png

_images/graphviz-3d7d97998a9e1c806339500a34fb907ade36fed4.png

_images/graphviz-59f9a8d0069e28ded27e886b7c3ff02ecdcd7764.png
CombinedFactor

DividedFactor

MarginalizedFactor

FilteredFactor

PriorFactor

NormalizedFactor

(A) SymbolicAbstractFactor

(1) SymbolicFactor

_images/graphviz-b23d72e156734f3861ac0ebd8e8e8dd95be364a8.png
IntervalLogFactor

IntervalVacuousFactor

N /S

ExtensiveVertexLogFactor

v

SeparateHalfspaceDefaultFactor

IntervalDefaultFactor

VertexLogFactor

VertexDeterministicFactor ExtensiveVertexDefaultFactor

}

I

L / Y

(A) SeparateHalfspace AbstractFactor

(A) IntervalAbstractFactor

VertexDefaultFactor

VertexFunctionFactor (A) ExtensiveVertex AbstractFactor

\
\

1

A 4

L :

ExtensiveHalfspaceFactor

(1) SeparateHalfspaceFactor

(1) IntervalFactor

VertexAbstractFactor

A 4

L

A 2

(1) ExtensiveVertexFactor

(1) ExtensiveLinearFactor<F>

(1) SeparateLinearFactor<F>

(A) ConditionalFactor<F>

(1) VertexFactor

SeparatelySpecifiedCredalFactor<S>

N,

e

(1) LincarFactor

(1) SeparatelySpecificd<F>

_static/img/idsia.png
=
W
-

L

ISdNS/ISN

nav.xhtml

 Table of Contents

 		
 Crema: A Java Toolbox for Credal Models Algorithms

 		
 Installation

 		
 Getting Started

 		
 Requirements

 		
 System

 		
 Package Dependencies

 		
 External Dipendencies

 		
 Factors

 		
 Generic Factors Interfaces

 		
 Credal Factors

 		
 Bayesian Factors

 		
 Symbolic Factors

 		
 Implementation

 		
 Factory

 		
 Conversion

 		
 Graphical Models

 		
 Working with networks

 		
 DAG Models

 		
 Inference Engines

 		
 Evidence

 		
 Multiple queries

 		
 Domains

 		
 Domain interface

 		
 SimpleDomain

 		
 DomainBuilder

 		
 Strides

 		
 Creating Strides

 		
 Domain Iterators

 		
 Modified variable order

 		
 Wider domain

 		
 Filtered Iterators

 		
 Credal Model

 		
 Credal Set Specification

 		
 Credal Network Specification

 		
 Credal Inference

 		
 Bayesian Network

 		
 Bayesian Inference

 		
 Exact Inference

 		
 Variable Elimination

 		
 Belief Propagation

 		
 Approximate Inference

 		
 Sampling

 		
 Loopy Belief Propagation

 		
 Contact and Support

_images/graphviz-09abb0f5e3ef6a243614f57f6d1016c9000b7c3b.png
BayesianNoisyOrFactor

BayesianAndFactor

BayesianOrFactor

I

(A) BayesianFunctionLogFactor

BayesianLogicFactor

BayesianNotFactor

BayesianLogFactor

BayesianDeterministicFactor

T\ 7

o

(A) BayesianFunctionFactor

BayesianDefaultFactor

N

(A) BayesianAbstractFactor

A 4

(1) BayesianFactor

_static/img/logo-doc.png
Crema

_static/img/logo.png
£ Crema

Credal Models Algorithms

